
  

DOE UTSR Meeting, Oct 2014, Purdue University, IN 

Advanced Thermal Barrier Coatings for 
Operation in High Hydrogen Content Gas Turbines 

Gopal Dwivedi, Vaishak Viswanathan,Yang Tan, Yikai Chen 

 Prof. Christopher M. Weyant, Prof. Sanjay Sampath 

DOE UTSR Meeting, Oct 22nd, Purdue University 

Dwivedi et al., JACerS, DOI: 10.1111/jace.13021 

Viswanathan et al., JACerS, DOI: 10.1111/jace.13033 

Dwivedi et al., JTST, Under Review 

Viswanathan et al., JACerS, Under Review 

DOE NETL UTSR  

Contract #DE-FE0004771 

2010-2014 

Program Manager: Dr. Briggs while 



  

DOE UTSR Meeting, Oct 2014, Purdue University, IN 

2 

Single Layer YSZ 

2010 

4 years 600 hrs 

 50 +coating conditions 

 40+ architectures 

 600+ FCT samples 

 Adequate erosion 

resistance 

 Significantly higher 

durability 

 CMAS resistance 

 Mechanisms  and 

Methodology to 

incorporate andy 

new composition 

Snapshot of accomplishment under UTSR program 

Layer-2 
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Layer-3 
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2014 
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Interplay between TBC durability and “manufactured” coating properties  

o Ceramic strength/toughness 
o Ceramic coating compliance 

and ceramic chemistry 

o Bond coat chemistry, Roughness 

o Ceramic coating toughness 
o Ceramic coating composition 

o Coating density o Coating porosity/cracks 

o Bond coat roughness 

o Coating thickness 

o Pore architecture 

o Coating thickness 

3 
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Multilayered architecture to combat multifunctional requirements 

Plasma spray is naturally suited for such layered 

manufacturing 

Erosion, FOD, CMAS/Ash 

Low-K material, Porosity, 

Lower sintering rate 

Remains complaint 

Compatibility with Bondcoat 

Mostly traditional TBC, High 

toughness 

Adequate roughness, 

oxidation resistant (dense), 

environmental effects 
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Multilayered architecture to combat multifunctional requirements 

Erosion, FOD, CMAS/Ash 

Low-K material, Porosity, 

Lower sintering rate 

Remains complaint 

Compatibility with Bondcoat 

Mostly traditional TBC, High 

toughness 

Adequate roughness, 

oxidation resistant (dense), 

environmental effects 
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6 Impact of water vapor on conv. & new TBC materials 

 No significant difference found at this temperature, and long term 

exposures 

  HVOF bond coats (NiCoCrAlY & NiCoCrAlYHfSi) for ORNL testing 

  ORNL is investigating the interactions with several different substrate materials 

Collaborative partnership with ORNL- Materials selection 

In
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e
s
u
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Figure 7:  This process map 
relates NiCr (a surrogate for 
NiCrAlY) particle states, achieved 
during liquid and gas fuel HVOF 
(Woka and Diamond Jet) and 
plasma spray (Triplex) to 
resultant microstructures and 
roughness. Significant difference 
among the TS bond coats exist in 
terms of microstructure, density 
and internal oxidation.  These 
differences can dramatically 
affect performance.   It is critical 
to understand these effects to 
optimize NiCrAlY bond coats.  
Maps allow for systematic 
tailoring of coating properties. 

 

Not all bond coats are the same! Processing plays a role 7 



  

DOE UTSR Meeting, Oct 2014, Purdue University, IN 

Processing Effects on HVOF Bond Coats 

HVOF process type and spray 

conditions significantly affect 

deposition stresses and final stress 

state of the coaitng.  

Jetkote STD JP5000 STD 

Jetkote- Reducing JP5000-  Reducing 

JP5000 chosen due to microstructure and 

compressive stress state. 
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9 

Collaboration with Dr. Bruce Pint and Dr. Allen Haynes at ORNL 

XPT: NiCoCrAlY 

AMDRY: NiCoCrAlY-HfSi 

Reactive element bondocat showed 

higher life under all the conditions 

Down selection of bond coat material 

Pint et al., AMP May 2012 
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NiCoCrAlYHfSi 
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Fine Particle size  

Two layered 
architecture  

Processing 
Control 

Rough bond coat 
surface 

Strategy 

Utilize the Fine particle size for Dense Oxidation Resistant initial layer 

Utilize the Coarse particle size to tailor the topography for high surface 

roughness 

Feedstock 

Processing Strategies 11 
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Substrate 

Layer-1: ~100µm Fine powder (Dense microstructure) 

Layer-2: ~50µm Coarse powder (Rough Surface) 
b

o
n

d
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o
a

t 

Two layers bond coat deposition 

50µm 50µm 50µm 

Densest bottom layer 

Poor splat cohesion 

Denser bottom layer 

Poor splat cohesion and some 

cracking 

Least dense bottom layer 

Good particle melting and splat 

cohesion 

Deposition Scheme 12 
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Rene 80  

NiCrAlYHfSi 

YSZ 

150μm 

300μm 

Rene 80  

NiCrAlYHfSi (Two Layered) 
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150μm 

300μm 

Rene 80  

Commercial 
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NiCrAlYHfSi NiCrAlYHfSi 
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Similar top coats on 3 different bond coats 

FOCUS : Two Layered Bond Coat 
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Improved bond coat 

roughness 

Performance of the Two Layered Bond Coat 13 
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14 

Teixeira et al., JTST, 9(2), 2000—191 

Padture et al., vol. 296,Science, 280, 

2002  

With extending service hours 

 TGO Growth: Additional Stress build up at 

the interface. (limited control) 

 Sintering: loss in compliance 

=> higher stress build up. Higher driving force 

for crack propagation. Process optimization to 

design coating with large compliance in as 

sprayed condition. 

Substrate 

Bondcoat 

TBC 

σ= 0 

σ = σi    σ = σi
s    

1st cool 

down 

nth cool 

down 

σi
s >> σi    

σi
s ≥ σc :Failure 

100µm 100µm 

As-deposited TBC Failed (~600 hrs) 

Failure 

Mechanism 

Failure mechanism of TBCs: Occurring at BC-TC interface 

Majority of TBC failure occur at the BC-TC 

interface. Parameter of interest is Fracture 

Toughness. 
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15 Is the toughness sensitive to microstructure of TBCs? 

Fractured X-section. APS YSZ coating 

Splat 

Intersplat boundaries 

Pores or voids 

Lamellar pores 

Intrasplat cracks 

1 m Some defects present more tortuous 

path to a crack than others. 

1µm 

Splat 

detachment 

Fracture 

through 

splats 

Interlamellar pore as a 

possible crack path  

These defects can be controlled via 

processing. 

Plasma spray can be utilized to produce significantly different microstructures. 

Can we manipulate the effective fracture toughness of these structure? 

Abradables Layered 

structures 
Segmented 

Structures 

APS YSZ 

50m  50m  50m  

Large globular 

pores 

Layered structure 

with thin splats 

Vertical crack with 

high “local” density 

The defect architecture governs 

Thermal conductivity and Coating 

compliance 
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Fracture Toughness: Double Torsion Technique 

Precrack
Load, P Specimen

t

W

Wm

Notch

Max. Load for 

fracture 

12 mm 

39- 40 mm 

20 

mm 

16 

 4 point bend loading at the notched edge 

 Pre-cracking @ 0.001 mm/sec 

 Loading till fracture @ 0.01 mm/sec 

  2
1

4

13







 






St
SPK mICIC

PIC - Maximum load at failure 

 - Poisson’s ratio 

S - specimen width 

Sm - moment arm 

t - specimen thickness  

 - thickness correction factor 

 = 1-1.26(t/S)+2.4(t/S)exp(-pS/2t)  

Free standing 

coating 

Advantages: 

 Does not require crack length monitoring 

 Can be performed a low thickness specimen (~600µm). 
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Case Study: Effect of particle size distribution  17 



  

DOE UTSR Meeting, Oct 2014, Purdue University, IN 

YSZ  

as-sprayed 
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rate 
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Fracture toughness and modulus relationship 

o With sintering or 

densification of 

microstructure, 

fracture toughness 

increases. 

 

o Toughness is more 

sensitive towards 

sintering 
FC 

coarse 

med E 

highE 

lowE 

fine 

150mm 

18 

E α 1/porosity 

Fracture toughness is 

sensitive to coating 

microstructure 
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19 FCT life of various APS YSZ architectures 

D 
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1100oC, 24 hrs cycle 

In order to limit the 

compliance loss 

1. Porous coatings 

 

 

 

 

 

2. DVCs 

 

 

Generally, it has been 

believed  that the porous 

TBCs last longer. 
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Design requirements 

Design requirements 

1. High toughness : Improved Cyclic Life 

2. Low modulus : Less driving force to failure 

3. Low thermal conductivity : Low substrate temperature 

 Need a strategic approach towards 

 coating design for multi-functionality 

Multiple requirements from a thermal barrier coating 
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Substrate 

Bond Coat 

Primary Requirement 

Elastic Modulus Fracture Toughness Thermal Conductivity 

Durability Thermal Performance Compliance 

Function of coating 

microstructure 

Processing strategies can control layer by layer coating properties  

Multiple requirements from a thermal barrier coating 21 
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Ni based Superalloy Substrate 
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Oxidation protection 

strength/creep resistant 

High fracture toughness layer 

Sinter Resistant  

Low Thermal conductivity 

Erosion and CMAS Resistant 

Low thermal conductivity 

Phase stability 

Teixeira et al., JTST, 9(2), 2000—191 

Padture et al., vol. 296,Science, 280, 2002  

Focus on need for high toughness ceramic at failure location 22 

σi
s ≥ σc :Failure 
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23 

Substrate 

Bondcoat 

TBC 

U= 0 

U = Ui 

Low 

stiffness 

High 

stiffness For constant hc 

Uinterface  α  E (modulus) 

Elastic Energy approach to optimize coating architecture 

)()(
)1(2

)1( 2

ccsubc

c

isothermal hETU 
-


 





Levi et al., MRS Bulletin, 2012 

Total Elastic Energy available for 

interfacial crack propagation  

Failure occurs when 

Uinterface ≥ Gc 

Ui
Dense > Ui

Porous  EDense > EPorous  

Approach: Higher toughness with denser coatings… 
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24 

Substrate 

Bondcoat 

TBC 

U= 0 

U = Ui 
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Uinterface  α  E (modulus) 
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Derived from Levi et al., MRS Bulletin, 2012 

For multilayer coatings 
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25 Revised TBC Architecture: Strategic approach for multi-functionality 
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Structural 
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26 

50µm 50µm 50µm 

Bi-layer with tough near-

interface layer 
Porous single layer Bi-layer with inverse 

architecture 

Revised TBC Architecture 

Substrate 

Bondcoat 

Porous architecture 

Conventional TBC 

Substrate 

Bondcoat 
Layer 1 : High toughness 

Layer 2 : Low modulus 

Optimal bi-layered TBC Inverse bi-layered TBC 

Substrate 

Bondcoat 

Layer 1 : Low modulus 

Layer 2 : High toughness 
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Bi-layer with tough near-interface layer 
Conventional porous single layer Bi-layer with inverse architecture 
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Failed Specimens 

The failure location for all the architectures remains the same 

Substrate 

Bondcoat 

Porous architecture 

Conventional TBC 

Substrate 

Bondcoat 

Layer 1 : High toughness 

Layer 2 : Low modulus 

Optimal bi-layered TBC Inverse bi-layered TBC 

Substrate 

Bondcoat 

Layer 1 : Low modulus 

Layer 2 : High toughness 
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29 Process optimization strategies 

Superalloy Substrate 

Overlay BC 

Porous 

YSZ 

Low K 

Low E 

Conventional TBCs 
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Durability TBCs 
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Effective in- plane elastic modulus, E  (GPa ) 
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Traditional 
YSZ 

New TBC 
Requirement 

Phase Stability Good < 1200C Good<1300-1400C 

Thermal Expansion Fair Challenging 

Thermal Conductivity* Low Lower 

Sintering Resistance* Fair Good 

Erosion Resistance* Good Challenging 

Fracture Toughness* Good Challenging 

Mechanical Compliance known To be explored 

Materials need for higher operating temp. and severe environments 

Materials’ intrinsic properties 

Can be optimized via processing strategies* 

30 
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Candidates for top coat composition under consideration 

Material Composition Advantages Powder 

YSZ 7-8wt% YSZ  Stable below 1200 C, cost effective, 

properties well-characterized  

Various sources, 

different levels 

of purity  

Zirconate  La2Zr2O7  Pyrochlore, low thermal conductivity, 

phase stability to 1400 C 

Julich  

Zirconate  Gd2Zr2O7  Pyrochlore, low thermal conductivity, 

phase stability to 1400 C, compatible 

with YSZ 

Saint Gobain, 

Julich,  

Co-doped 1.5mol%Yb2O3 

1.5mol% Gd2O3  

2.1mol% Y2O3 

ZrO2  

t’ phase, low thermal conductivity, 

sintering resistant, compatible with 

MCrAlY bond coat, high erosion 

resistance  

NASA 

YSZ-Al-Ti YSZ+20mol%Al

+5mol%Ti 

CMAS resistant Ohio State Univ 

TBC Materials under considerations 

31 
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Exploring and processing new materials 

Cluster-doped YSZ Gd2Zr2O7 La2Zr2O7 

32 
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Courtesy : Levi et al MRS Bulletin 2012 

Challenges: 

1. CMAS mitigation 

2. High erosion/FOD 

resistance 

3. Compatibility with YSZ 

100 μm 

YSZ 

Gd2Zr2O7 

Transitioning to low K TBC:  Gd2Z2O7 pyrochlores 

All  have significant 

dependency on processing 

33 
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SiO2 CaO FeO Al2O3 Cr2O3 MgO SO3 TiO2 SrO MnO K2O Na2O P2O6 

29.7 25.4 14.8 14.7 5.1 3.6 1.8 1.1 1.0 0.9 0.8 0.6 0.2 

34 

Reaction zone 

~100 µm 

100 µm 

Porous GDZ Dense GDZ 

Reaction zone 

~35 µm 

100 µm 

 Dense GDZ seems to offer lesser Lignite ash penetration depth. 

 It also offer benefits in terms of erosion resistance. 

 However, it has high modulus, which will increase the overall strain energy 

Coating microstructure for enhanced CMAS resistance 

Courtesy: Prof. Nitin Padture 
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SiO2 CaO FeO Al2O3 Cr2O3 MgO SO3 TiO2 SrO MnO K2O Na2O P2O6 
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Reaction zone 

~100 µm 

100 µm 

Porous GDZ Dense GDZ 

Reaction zone 

~35 µm 

100 µm 

 Dense GDZ seems to offer lesser Lignite ash penetration depth. 

 It also offer benefits in terms of erosion resistance. 

 However, it has high modulus, which will increase the overall strain energy 

Molten ash  

wicking 

DVC GZO 

Lignite Ash 

Isothermal treatment  under CMAS like conditions  

Potential candidate for Top layer 

Coating microstructure for enhanced CMAS resistance 

Courtesy: Prof. Nitin Padture 
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1300C-
110h 

1200C-110h 

1300C-10h 
& 

1200C-110h 

Various duration 
at 1100C and 
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YSZ 
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Larson Miller Parameter (LMP) 

LMP = T(ln t + C) 

Larson Miller Parameter (LMP): Temp and Time for thermal exposure 

36 

High K, Low 

Sintering rate 

Sintering behavior of new materials: Challenges 
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Toughness of GDZ!!! 
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Y1 

• YSZ and GDZ process property relationships 
• Process Map development 

• Toughness, Lignite ash penetration depth, erosion 

Y2 

• Rough bond coat process optimization with 
40% increase in FCT life 

• Two layer dense BC layer 

Y3 

•  bi-layer YSZ coating with two fold increase in 
FCT life, and maintaining low K 

• High toughness interface layer, Elastic energy model 

Y4 
• Multilayer YSZ-GDZ coating system 

• enhanced life, Lignite ash penetration minimization, 
erosion resistance 

Systematic progress over past four years 
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CTSR 

UTSR 

Program 

GE Aviation 

Different  FCT 

cycling time 

Praxair 

Gradient Jet-test 

Siemens 

FCT 

ORNL 

Various cycling 

time and 

substrate 

material 

CTSR 

Further reduction in the 

cost- Bondcoat processing, 

other  TBC materials 

CTSR 

Burner rig testing with 

CMAS attach 

CTSR 

TBC overhaul: 

reclaimed substrates 

Extension and evaluation of multilayer YSZ-GDZ coatings  

CTSR 

Deposition and testing 

on an actual component 
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